an-asteroid-burned-up-over-california-just-hours-after-being-spotted

An asteroid measuring roughly one metre in diameter impacted Earth’s atmosphere on October 22, 2024, only hours after its initial detection. Discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) in Hawaii, the object — named 2024 UQ — approached the planet undetected by global impact monitoring systems before disintegrating over the Pacific Ocean off California’s coast. The European Space Agency’s (ESA) Near-Earth Object Coordination Centre later confirmed the event in its November newsletter, reporting that tracking data for the asteroid did not reach monitoring systems until after the impact had already taken place.

Limited Tracking Data Due to Detection Timing

According to ESA’s November newsletter, 2024 UQ had been picked up by ATLAS’ sky-monitoring telescopes. However, the asteroid was only identified as a moving object minutes before it entered Earth’s atmosphere due to its location between two adjacent sky fields in the survey system. This detection delay meant that essential tracking data was delayed and unavailable for impact monitoring centres, which track potential near-Earth object (NEO) threats. Confirmation of the asteroid’s impact was made possible by data from the National Oceanic and Atmospheric Administration’s (NOAA) GOES weather satellites and NASA’s Catalina Sky Survey, which recorded flashes that confirmed the entry of 2024 UQ.

Third Imminent Impact Event in 2024

This incident marked the third imminent impactor event in 2024. In January, a similar object designated as 2024 BX1 burned up over Berlin, while another asteroid, 2024 RW1, exploded above the Philippines in September, with footage of the fireball captured by local observers. These instances underscore the rarity yet growing frequency of small asteroids entering Earth’s atmosphere undetected.

Global Efforts to Monitor Near-Earth Objects

Planetary defence remains a priority as space agencies worldwide develop systems to track potentially hazardous objects. In addition to projects like ATLAS and the Catalina Sky Survey, NASA’s upcoming NEO Surveyor mission aims to use infrared technology to enhance detection capabilities. ESA’s NEO Coordination Centre continues its work on tracking near-Earth objects, while deflection experiments, including NASA’s DART mission in 2022, are also underway to test potential asteroid redirection strategies.

Leave a Reply

Your email address will not be published. Required fields are marked *